
Algebraic quantum hypergroups imbedded in algebraic quantum
groups

Kenny De Commer∗

Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata
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Abstract

We show that for any ∗-algebraic quantum group, the space of invariants for the square of the antipode
carries the structure of a ∗-algebraic quantum hypergroup.

Introduction

In [20], A. Van Daele introduced the notion of a ∗-algebraic quantum group. These objects united
and generalized compact and discrete quantum groups in an entirely algebraic framework, and they
formed a major motivation for the general theory of locally compact quantum groups as developed in
[9]. In [5], the notion of a ∗-algebraic quantum group was generalized to that of a ∗-algebraic quantum
hypergroup. The main difference with a ∗-algebraic quantum group is that the comultiplication ∆ is
no longer required to be an algebra morphism, although it still commutes with the ∗-structure. How-
ever, the comultiplication and multiplication are now tied together in a weak way, by the existence
of an anti-automorphism, which is some kind of antipode, satisfying a form of ‘strong left invariance’
with respect to a ‘left Haar functional’.

The main construction of classical hypergroups consists of considering double coset spaces for a group-
subgroup pair. For some partial generalizations of this construction to the quantum setting, see e.g.
[17], [1], [8] and [14]. In this paper, we will consider a general construction method of ∗-algebraic
quantum hypergroups from ∗-algebraic quantum groups, which is only interesting in the quantum set-
ting. Namely, we show that the space of fixed points of the antipode squared has a natural ∗-algebraic
quantum hypergroup structure.

The layout of this paper is as follows. In the first section we show that for every ∗-algebraic quan-
tum group, there exists a certain compact group which acts on it by comultiplication-preserving
∗-automorphisms. We can then construct a crossed product, which can be endowed naturally with
a ∗-algebraic quantum group structure. In fact, this is a (very special) example of the bicrossed
product of ∗-algebraic quantum groups. Using a certain distinguished group-like element in this new
∗-algebraic quantum group, we can then construct a ∗-algebraic quantum hypergroup within A. In
particular, this will allow us to show that the set of fixed points of the antipode squared carries a
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natural structure of ∗-algebraic quantum hypergroup. We note that this construction could also have
been carried out in a more straightforward fashion, but it seemed nice to use this more elaborate
procedure as to provide a link with the work in [6].

In the second section, we will see how this construction, when applied to the dual ∗-algebraic quan-
tum group, is naturally the dual of the ∗-algebraic quantum hypergroup created from the original
∗-algebraic quantum group.

In the third section, we apply these construction methods to Woronowicz’ twisted SUq(2) and its dual

ŜU q(2). In the case of SUq(2), we provide some concrete formulas. We note that the treatment of
this example does not really need any of the previous abstract theory, but at least it shows one can
get interesting phenomena by this construction.

Conventions and remarks on notation

By ι we always mean the identity map. We use ⊗ for the tensor product between vector spaces over
C, and, in the third section, ⊗̄ for the spatial tensor product between von Neumann algebras. The
dual of ac vector space V is denoted as V ◦, since we use the symbol ∗ for ∗-operations.

In this paper, we will need to work with non-unital ∗-algebras. When X is a non-degenerate ∗-algebra,
we denote by M(X) the unital ∗-algebra of multipliers of X (see e.g. the appendix of [18]). When
p ∈ X is a (self-adjoint) projection, we will identify pM(X)p with M(pXp) as ∗-algebras in the natural
way.

For the notion of a ∗-algebraic quantum group, we refer the reader to [20]. The concept of a ∗-algebraic
quantum hypergroup was introduced in [5]. We recall that the main difference between these concepts
is that in the latter structure, the comultiplication is not assumed to be a homomorphism.

1 A quantum hypergroup structure on Fix(S2)

We begin with recalling the following result from [3].

Proposition 1.1. Let (A,∆) be a ∗-algebraic quantum group with antipode S. Then there exists a
basis of A consisting of eigenvectors for the linear map S2.

For the rest of this section, (A,∆) will then be a fixed ∗-algebraic quantum group with antipode S.

Definition 1.2. We denote by T ⊆ R+
0 the set of eigenvalues of S2, considered as a linear map A→ A.

We denote by G the subgroup of (R+
0 , ·) generated by T .

For r ∈ T , we denote by Vr ⊆ A its associated space of eigenvectors.

We denote C = V1 = Fix(S2), the space of fixed elements for S2.

Now let K(G) be the ∗-algebra of functions with finite support on G. It can be made into a ∗-algebraic
quantum group by endowing it with the comultiplication Ψ determined by

Ψ(δr) =
∑
s∈G

δrs−1 ⊗ δs,
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where δr denotes the Dirac function at the element r ∈ G (see for example the introduction of [20]).
We will now construct a new ∗-algebraic quantum group, starting from (A,∆) and (K(G),Ψ). The
construction of this algebra is inspired by a result of Connes concerning quasi-periodic weights on von
Neumann algebras, and by a remark in [10]. Namely, one can take the dual compact abelian group
Ĝ, and let it act on A by an action α satisfying the formula

αχ(a) = 〈χ, r〉a χ ∈ Ĝ, r ∈ T, a ∈ Vr.

Then each αχ can be shown to be an automorphism of the ∗-algebraic quantum group, and by this
one can construct a quantum group structure on the crossed product. In the following, we will carry
out this construction in detail, using however smash products instead of crossed products (although
these are really equivalent concepts in this context).

We will first need to prove a couple of lemmas.

Lemma 1.3. There exists a unique unital left K(G)-module ∗-algebra structure on A such that

f � a = f(r)a r ∈ T, a ∈ Vr, f ∈ K(G).

We recall that a unital left module ∗-algebra structure is a unital left module structure (K(G)�A = A),
interacting with the ∗-algebra structure in the following way:

x� (yz) = (x(1) � y) · (x(2) � z),

x� (y∗) = ((S(x)∗) � y)∗.

Proof. By Proposition 1.1, it is clear that the formula in the statement of the Lemma can be extended
linearly to a unital left K(G)-module structure on A. Since S2 is an automorphism, we also have
that if r, s ∈ T , then Vr · Vs ⊆ Vrs, from which the module algebra property follows. Finally, since
S(a)∗ = S−1(a∗) for a ∈ A, we have V ∗r = Vr−1 , from which the module ∗-property follows.

For the following lemma, we make some remarks. Let H be a ∗-algebraic quantum group, X a non-
degenerate ∗-algebra, and suppose that we have a unital left module ∗-algebra structure � of H on X.
Then we first remark that X ⊗X becomes a unital left H ⊗H-module ∗-algebra in the natural way.
A second remark is that � can be extended to a H-module structure on M(X): if x ∈ M(X) and
h ∈ H, we make sense of h�x as a multiplier by the following formulas: if y ∈ X and e is an element
in H such that e� y = y (which exists by the unitality of the left H-module X and the existence of
local units in H), we define

(h� x) · y = h(1) � (x · ((S(S−1(e)h(2))) � y)), y ∈ X,

y · (h� x) = h(2) � ((S−1(S(e)h(1)) � y) · x), y ∈ X.

Finally, for h ∈ M(H) and x ∈ M(X), we can then also make sense of h � x as a map from H to
M(X), sending g ∈ H to (gh) � x. See the discussion in section 3 and appendix B of [6] for some
more information on the well-definedness of these constructions.

We can now make sense of the identity in the following lemma.

Lemma 1.4. For a ∈ A and f ∈ K(G), we have

∆(f � a) = Ψ(f) � ∆(a).
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Proof. Choose u ∈ G, r ∈ T and a ∈ Vr. It is sufficient to prove the above identity for f = δu. Choose
also s, t ∈ G. Then, by the above discussion, it is sufficient to prove the above identity when applying
δs ⊗ δt to the left of it, which leads to the identity

δu,r(δs ⊗ δt) � ∆(a) = δst,u(δs ⊗ δt) � ∆(a).

Now choose yet another w ∈ T , and put b ∈ Vw. Then multiplying the previous expressions to the
right with (1 ⊗ b), and again using the remarks before the Lemma, we see that it becomes sufficient
to prove that

δst,u(δs ⊗ δtw) � (∆(a)(1⊗ b)) = δu,r(δs ⊗ δtw) � (∆(a)(1⊗ b)).

Write ∆(a)(1⊗ b) as a finite sum of elements pi ⊗ qi, where the qi are linearly independent elements
such that qi ∈ Vri for some ri ∈ T . Choose ωi ∈ A◦ dual to the qi, so that ωj(qi) = δij . Then

pi = (ι⊗ ω)(∆(a)(1⊗ b)),

and since S2 is a ∆-preserving automorphism, we find

S2(pi) = (ι⊗ ω)((S2 ⊗ ι)(∆(a)(1⊗ b)))
= (ι⊗ (ω ◦ S−2))(∆(S2(a))(1⊗ S2(b)))

= rw
∑

ω(S−2(qi))pi

= rwr−1i pi,

and hence pi ∈ Vrwr−1
i

. But this means that when (δs ⊗ δtw) � (∆(a)(1 ⊗ b)) is not zero, necessarily

st = r. This concludes the proof.

The proofs of the following two propositions will be given after the statement of the second one.

Proposition 1.5. Let B be the vectorspace A ⊗ k(G). Then B can be made into a non-degenerate
∗-algebra by endowing it with the multiplication

(a⊗ δr) · (b⊗ δs) = δr,ts ab⊗ δs, r, s ∈ G, t ∈ T, a ∈ A, b ∈ Vt

and the ∗-operation
(a⊗ δr)∗ = a∗ ⊗ δsr, r ∈ G, s ∈ T, a ∈ Vs.

Remark : We can then imbed the ∗-algebra A into M(B) by sending a to a ⊗ 1, which is easily
interpreted as a multiplier of B. Similarly, K(G) can be imbedded into M(B) by sending f to 1⊗ f .
We will then identify A and K(G) with their images inside M(B), and we then have B = A ·K(G) =
K(G) ·A. The following commutation relations are easily verified to hold in M(B):

δra = aδs−1r, r ∈ G, s ∈ T, a ∈ Vs.

Proposition 1.6. There exists a unique ∗-algebraic quantum group structure (B,∆B) on B, such
that for all a, b ∈ A and f, g ∈ K(G), we have

(1⊗ a)∆B(bf)(1⊗ g) = (1⊗ a)∆(b) ·Ψ(f)(1⊗ g).

Proof. We give A the unital left ∗-module algebra structure � by K(G) as before, and consider K(G)
as a trivial right A-comodule ∗-coalgebra by the comodule map A → A ⊗ K(G) : a → a ⊗ 1. We
then check that these two structures satisfy the compatibility conditions of Theorem 3.16 of [6], from
which the result will follow from (the dual version of) Theorem 4.3 of [6].
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Now the conditions stated there, written out in Sweedler notation, say that the following identities
should hold for all f, g ∈ K(G) and a ∈ A:∑

f(1)g(1) ⊗ (f(2)g(2)) � a =
∑
f(1)g(1) ⊗ f(2) � (g(2) � a),∑

f(1) ⊗∆(d(2) � a) =
∑
f(1) ⊗ f(2) � a(1) ⊗ f(3) � a(2),∑

f(1) ⊗ f(2) � a =
∑
f(2) ⊗ f(1) � a.

Then the first identity follows by the module property, the second by Lemma 1.4, and the third by
the cocommutativity of K(G).

Remarks:

1. In [16], a very general kind of bicrossed product construction was considered in the framework
of locally compact quantum groups. Since ∗-algebraic quantum groups are particular kinds of
locally compact quantum groups (by [10]), one could also invoke the results of that paper to
obtain the previous result. We have decided to stick however with purely algebraic machinery.

2. By the formulas of [6], it follows that a left invariant positive functional ϕB on B is provided by

ϕB(af) = ϕ(a) ·
∑
r∈G

f(r),

where ϕ is a left invariant positive functional on A.

3. Let Q be the element
∑

r∈G rδr ∈M(K(G)) = F (G), the ∗-algebra of all functions on G. Then
Q∗ = Q and Ψ(Q) = Q⊗Q. Inside M(B), we can then consider the ∗-algebra generated by A and
Q, which will be the universal ∗-algebra generated by A and Q with the commutation relation
Qa = S2(a)Q. The comultiplication restricts to it as ∆B(a) = ∆(a) and ∆B(Q) = Q ⊗ Q. So
we obtain a multiplier Hopf ∗-algebra structure on the crossed product Ao Z, where Z acts on
A by even powers of the antipode. It is clear that this construction will work for any multiplier
Hopf (∗)-algebra, but when we apply it to a ∗-algebraic quantum group,this construction will
(in general) not give us back a ∗-algebraic quantum group.

The following definition is taken from [13].

Definition 1.7. If (H,∆) is a ∗-algebraic quantum group, a group-like projection in H is a self-
adjoint projection e in M(H) satisfying ∆(e)(1⊗ e) = e⊗ e.

Definition 1.8. With (A,∆) and (B,∆B) as before, we define p as the group-like projection δ1 in
M(B), where 1 ∈ G ⊆ R+

0 .

From [13], we get that pBp can naturally be turned into a ∗-algebraic quantum hypergroup (pBp,∆pBp).
We now want to find an isomorphic copy of it, more directly in terms of (A,∆).

We recall that we write C = V1 = Fix(S2).

Lemma 1.9. We have pBp
π∼= C ⊆ A as ∗-algebras, for some natural ∗-isomorphism π.

Proof. Take an element b ∈ B. Then there exists a unique function G × G → A : (r, s) → ar,s, zero
almost everywhere, such that ar,s ∈ Vs and b =

∑
r,s ar,s · δr. We then find

pbp =
∑
r,s

ar,s · δs−1 · δr · δ1

=
∑
r,s

δs−1,rδr,1 ar,s · δ1

= a1,1δ1.
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Hence π−1 : a → ap defines a linear bijection from Fix(S2) to pBp. It is immediately seen to be a
∗-isomorphism.

Definition 1.10. We define
E : A→ A : a→ δ1 � a.

Lemma 1.11. The map E is idempotent, commutes with the ∗-operation and has range equal to C.
Moreover, it is C-bilinear.

Proof. The first three statements are trivial to verify. Also the bilinearity property is easily seen to
hold true, since for r ∈ T , the space Vr is a C-bimodule.

Proposition 1.12. Under the isomorphism π : pBp→ C, the map ∆pBp gets carried into

∆C : C →M(C ⊗ C) : c→ (E ⊗ E)(∆(c)), c ∈ C.

Remark that (E⊗E)(∆(c)) can be made sense of as an element of M(C ⊗C) by the C-bimodularity
property of E.

Proof. The comultiplication on pBp is obtained from ∆B by cutting down with p⊗ p:

∆pBp(x) = (p⊗ p)∆B(x)(p⊗ p) x ∈ pBp.

Choose now c, d ∈ C. Then

∆pBp(π(c))(1⊗ π(d)) = (p⊗ p)∆B(pc)(p⊗ p)(1⊗ pd)

= (p⊗ p)Ψ(p)∆(c)(1⊗ d)(p⊗ p)
= (p⊗ p)∆(c)(1⊗ d)(p⊗ p).

Hence it is sufficient to prove that for a ∈ A, the equality pap = E(a)p holds in B. But pap = p(ap)p,
and hence this identity follows from the computation in Lemma 1.9.

Remark : in [2], an abstract theory of special conditional expectations on the C∗-algebras of compact
quantum groups is created, as to create a compact quantum hypergroup structure on the range of the
conditional expectation in exactly the same way as above. One can check that when our ∗-algebraic
quantum group is of compact type, the above map E is indeed a conditional expectation satisfying
these conditions. However, for arbitrary ∗-algebraic quantum groups, it is not yet clear what precise
properties are needed on E to establish that we get a ∗-algebraic quantum hypergroup in the above
way. In [4], a set of conditions is proposed, but it seems too restrictive to include the above example.

2 Considering the duals

We keep the notation as in the previous section. That is, (A,∆) is a fixed ∗-algebraic quantum group,
and (C,∆C) is its associated ∗-algebraic quantum hypergroup structure on the space of S2-fixed ele-
ments. We will further denote by (Â, ∆̂) the dual of (A,∆), and by (D,∆D) the natural ∗-algebraic
quantum hypergroup structure on the space of fixed elements for the antipode squared Ŝ2 on Â.
Finally, by (Ĉ, ∆̂C) we denote the dual ∗-algebraic quantum hypergroup of (C,∆C).

Proposition 2.1. There is a natural isomorphism of ∗-algebraic quantum hypergroups (Ĉ, ∆̂C) →
(D,∆D).
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Proof. Denote by ϕ a non-zero positive left invariant functional for (A,∆). We recall from [3] that
then ϕ ◦ S2 = ϕ, from which it immediately follows that ϕ ◦E = ϕ. Hence the restriction ϕC of ϕ to
C is a non-zero positive left invariant functional for (C,∆C).

We recall now from [20] and [5] that Â (resp. Ĉ) can be identified with the space of functionals
on A (resp. C) of the form ϕ( · a) with a ∈ A (resp. ϕC( · c) with c ∈ C). Moreover, the map
a ∈ A→ ϕ( · a) ∈ Â is then a linear bijection (and similarly for C). Consider then the map

Θ : D → Ĉ : ϕ( · a)→ ϕC( ·E(a)).

We claim that Θ is an isomorphism of ∗-algebraic quantum groups.

In fact, since ϕ◦S2 = ϕ and Ŝ2(ω) = ω◦S2 for ω ∈ Â, it is immediately seen that a ∈ C iff ϕ( · a) ∈ D,
so Θ is in any case a bijection. By the E-invariance of ϕ and the C-bimodularity of E, we have that
Θ is also the restriction to D of the projection map

P : Â→ C◦ ⊇ Ĉ : ω → ω|C .

Denoting by Ê the equivalent of E for (Â, ∆̂), it is then also clear that 〈Ê(ω), a〉 = 〈ω,E(a)〉 for
ω ∈ Â and a ∈ A.

Choose now c, d, x ∈ C and write ω1 = ϕ( · c) and ω2 = ϕ( · d) as elements in D ⊆ Â. Then

〈Θ(ω1 · ω2), x〉 = 〈ω1 · ω2, x〉
= (ϕ⊗ ϕ)(∆(x)(c⊗ d))

= (ϕ ◦ E ⊗ ϕ ◦ E)(∆(x)(c⊗ d))

= (ϕ⊗ ϕ)((E ⊗ E)(∆(x))(c⊗ d))

= (ϕC ⊗ ϕC)(∆C(x)(c⊗ d))

= 〈Θ(ω1) ·Θ(ω2), x〉,

proving that Θ is an algebra homomorphism. In the same way it can be shown to be ∗-preserving.

Finally, choose ω1, ω2 ∈ D and c, d ∈ C. Then

〈(Θ⊗Θ)(∆D(ω1)(1⊗ ω2)), c⊗ d〉 = 〈(Ê ⊗ Ê)(∆̂(ω1)(1⊗ ω2)), c⊗ d〉
= 〈∆̂(ω1)(1⊗ ω2), c⊗ d〉
= 〈ω1 ⊗ ω2, (c⊗ 1)∆(d)〉
= 〈ω1 ⊗ ω2, (c⊗ 1)∆C(d)〉
= 〈Θ(ω1)⊗Θ(ω2), (c⊗ 1)∆C(d)〉
= 〈∆̂C(Θ(ω1))(1⊗Θ(ω2)), c⊗ d〉.

This concludes the proof.

3 ∗-Algebraic quantum hypergroups associated with SUq(2)

Let us now consider a concrete example, namely the compact quantum group SUq(2) ([21]) and its
dual. We fix a number 0 < q < 1.
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We denote by A = Pol(SUq(2)) the unital ∗-algebra, generated by two elements a and b, satisfying
the commutation relations 

a∗a+ b∗b = 1 ab = q ba
aa∗ + q2bb∗ = 1 a∗b = q−1ba∗

bb∗ = b∗b.

It can be given a comultiplication ∆ by the formulas

∆(a) = a⊗ a− qb∗ ⊗ b

∆(b) = b⊗ a+ a∗ ⊗ b,

and it then becomes a ∗-algebraic quantum group of compact type (i.e. a Hopf ∗-algebra allowing a
non-zero positive invariant functional).

The antipode S is determined by the formulas S(a) = a∗, S(a∗) = a, S(b) = −qb and S(b∗) = −q−1b∗.
Since the set of elements

{ambk(b∗)l, (a∗)mbk(b∗)l | m, k, l ∈ N}

forms a vector space basis of A ([21]), we see that the space of fixed points of S2 is the ∗-algebra
generated by a and a∗, and that the associated conditional expectation E is given by E(ambk(b∗)l) =
δk,la

m(b∗b)k and E((a∗)mbk(b∗)l) = δk,l(a
∗)m(b∗b)k.

Further keeping notation as in the previous section, it is then not difficult to see that the ∗-algebra C
can be identified with the unital ∗-algebra generated by a single element c satisfying the commutation
relation

(1− cc∗) = q2(1− c∗c),

the identification with a sub-∗-algebra of A being given by sending c to a. As for the comultiplication
∆C
∼= (E ⊗ E)∆A, one can easily calculate that

∆C(1) = 1⊗ 1

∆C(c) = c⊗ c
∆C(c∗) = c∗ ⊗ c∗

∆C(c∗c) = c∗c⊗ c∗c+ q2(1− c∗c)⊗ (1− c∗c).

To know the full comultiplication, one should determine it on the vector space basis (c∗)kcm. We
refrain from carrying out this computation here, since we will find an equivalent, but more natural
formula for the comultiplication later on.

The dual ∗-algebraic quantum group (Â, ∆̂) of Pol(SUq(2)) will be of discrete type. The underlying
∗-algebra is the (infinite) direct sum ∗-algebra ⊕l∈ 1

2
NM2l+1(C), where one designates the number l

of some matrix block as the spin number. It can be shown ([19]) that there then exists a system of

matrix units e
(l)
rs , where r and s take values in {−l,−l + 1, . . . , l − 1, l}, such that

Ŝ2(e(l)rs ) = q2(s−r)e(l)rs .

It immediately follows that D = Fix(Ŝ2) is the commutative ∗-algebra ⊕
l∈ 1

2
N
C2l+1, and that Ê is

determined by Ê(e
(l)
rs ) = δr,se

(l)
rs . By duality, we then obtain that the comultiplication on C is cocom-

mutative.
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We note that also the center Z = ⊕l∈ 1
2
NC can be endowed with a quantum hypergroup structure, by

giving it the comultiplication

∆Z (x) = (F ′ ⊗ ι)∆D(x) = (ι⊗ F )∆D(x), x ∈ D,

where F (e
(l)
rr ) = F ′(e

(l)
−r,−r) = c(l)q

−2r, and c(l) = q−1−q
q−2n−1−q2n+1 . This then determines a classical

hypergroup structure on the set Irred(SUq(2)). We note that this is a general result for all discrete
∗-algebraic quantum groups, and it has appeared (implicitly) in the study of Poisson boundaries of
discrete quantum groups. Indeed, in this theory, one often first computes the Poisson boundary of
this associated discrete quantum hypergroup, which is sometimes trivial (for example when the dual
compact quantum group has commutative fusion rules, as is the case for SUq(2)), but not always

(for example, in [15] it is shown that for the universal discrete quantum groups Âu(F ), one obtains a
hypergroup structure on the set N ∗ N with a non-trivial Poisson boundary).

Let us now examine the coproduct on the compact quantum hypergroup C more closely. We will in
fact study the associated von Neumann algebraic picture. Indeed, one can embed Pol(SUq(2)) as a
σ-weakly dense sub-∗-algebra in the von Neumann algebra L∞(SUq(2)) := B(l2(N))⊗L (Z), by the
application

a→ (
∑
k∈N0

√
1− q2kek−1,k)⊗ 1,

b→ (
∑
k∈N

qkekk)⊗ S,

where ekl are the natural matrix units of B(l2(N)), and S denotes the forward shift. Then ∆ can
be extended to a normal unital ∗-homomorphism ∆ : L∞(SUq(2)) → L∞(SUq(2))⊗L∞(SUq(2)),
making (L∞(SUq(2)),∆) into a von Neumann algebraic quantum group.

We note then that E can also be extended to a normal conditional expectation

E : L∞(SUq(2))→ B(l2(N)) ⊆ L∞(SUq(2)) : ekl ⊗ Sm → δm,0ekl.

In this way, we can also extend ∆C to a normal, unital, ∗-preserving coassociative comultiplication

∆C : B(l2(N))→ B(l2(N))⊗̄B(l2(N)) : x→ (E ⊗ E)(∆(x)).

We have then endowed B(l2(N)) with the structure of a ‘(compact) von Neumann algebraic quantum
hypergroup’ structure, although such a concept has as of yet not been defined rigourously. Note that
by duality, the predual B(l2(N))∗ then becomes ‘a completely contractive Banach ∗-algebra’, where
the ∗-structure is implemented by the unitary antipode, so that ω∗rs = ωsr, with ωrs denoting the
functional

ωrs(ekl) = δr,kδs,l

in B(l2(N))∗. Since ∆C is cocommutative, B(l2(N))∗ will be commutative.

Let us now compute the comultiplication on the basis elements ers. We use the explicit implementation
of ∆ by a unitary v as obtained in [11], Theorem 4.1. One then easily arrives at the expression

∆C(ers) =
∞∑
k,l

k,l≥s−r

f(min{k, l}, |k − l|, s)f(min{k, l}+ r − s, |k − l|, r)ek+r−s,k ⊗ el+r−s,l,
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where f is the function on N3 determined by

f(k, n, r) =
(q2+2n; q2)

1/2
∞ (q2+2n; q2)

1/2
k

(q2; q2)k
(−qn+1)r−kpk(q

2r; q2n, 0 | q2)

with pk(x; q2n, 0 | q2) = 2φ1(q
−2k, 0; q2n+2; q2, q2x) (the so-called Wall polynomials). Using formula

(4.7) of [11], we see that the expression for ∆C(e00) can be simplified to

∆C(e00) = (q2; q2)∞

∞∑
k,l=0

q2kl

(q2; q2)k(q2; q2)l
ekk ⊗ ell.

Note that it immediately follows from these computations that ∆C restricts to the von Neumann
algebra L∞(N) ⊆ B(l2(N)) of diagonal operators:

∆C(L∞(N)) ⊆ L∞(N)⊗̄L∞(N).

But this restriction will give the double coset quantum group structure on S1\SUq(2)/S1 as studied
in [1]. Indeed, with

F : L∞(SUq(2))→ L∞(S1\SUq(2)/S1) = W ∗(b∗b) : ers ⊗ Sn → δr,sδn,0err ⊗ 1

the natural conditional expectation obtained by integrating out the action α of S1×S1 on L∞(SUq(2))
determined by

α(ϕ,θ)(a) = ei(ϕ+θ)a,

α(ϕ,θ)(b) = ei(ϕ−θ)b,

we have that F ◦E = F , so that ∆C , restricted to L∞(S1\SUq(2)/S1), gives the natural comultipli-
cation ∆L∞(S1\SUq(2)/S1) = (F ⊗ F )∆.

Finally, let us look at the bicrossed product construction of the first section in this case. We have now,
using again the notations of that section, that T = G = {q2n | n ∈ Z}, and so Ĝ ∼= S1 ∼= R/ π

ln(q)Z.

The bicrossed product B of A and K(G) will then be a ∗-algebraic quantum group of non-discrete,
non-compact type. It can be implemented on the Hilbert space l2(N) ⊗ l2(Z) by letting A act as in
the previous way, and K(G) by

δq2r → 1⊗ δr.

Its left invariant positive functional can be implemented by the nsf weight θ⊗Tr, where Tr is the canon-
ical trace on B(l2(Z)), and θ is the state on B(l2(N)) determined by θ(ers) = δrs(1−q2)q2r. It also fol-
lows from this that the von Neumann algebraic quantum group associated to B has B(l2(N))⊗̄B(l2(Z))
as its associated von Neumann algebra. This provides yet another example of a von Neumann al-
gebraic quantum group whose underlying von Neumann algebra is an (infinite-dimensional) type I
factor. However, it seems to be the first example of such a von Neumann algebraic quantum group
which is regular (which follows since any ∗-algebraic quantum group has a regular associated von
Neumann algebraic quantum group).
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